Skip to main content
Log in

Toxicity and dissipation of soil insecticides applied in the management of arecanut white grub, Leucopholis burmeisteri Brenk. (Coleoptera: Scarabaeidae)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

White grubs, Leucopholis spp. are subterranean pests of arecanut grown in South India. Grub infestation leads to yellowing, stem tapering, and crown size and yield reduction. Use of chemical insecticide to mage the white grubs gives varying degree of success. Hence an attempt was made to screen newer and safer insecticides. Imidacloprid (LC50 at 120 h = 16.849 ppm on III instar larvae), chlorpyriphos (LC50 = 14.242) and bifenthrin (LC50 = 12.797 ppm) were identified as effective insecticides. Evaluation of these insecticide in the field over two year period indicated the following efficacy in reducing larval population: chlorpyriphos @ 4 kg a.i/ha (83.31%) > bifenthrin @ 4 kg a.i./ha (82.83%) > imidacloprid @ 0.24 kg a.i./ha (75.84%) > bifenthrin @ 2 kg a.i./ ha (74.26%) > chlorpyriphos @ 2 kg a.i./ha (69.15%) > chlorpyriphos @ 1 kg a.i./ha (61.79%) > imidacloprid @ 0.12 kg a.i./ha (56.54%) > bifenthrin @ 1 kg a.i./ha (54.34%) > imidacloprid @ 0.06 kg a.i./ha (41.47%). Bifenthrin in soil persisted for a longer period than chlorpyriphos. On the day of application, 59.46 ppm bifenthrin residue was recovered from soil. On 10th day, it was 7.29 ppm which decreased to 2.59 ppm on 30th day and was beyond detection limit on 65th day. Chlorpyriphos exhibited a rapid degradation in the initial stage; 27.46 ppm residue on the day of application, which further reduced to 0.964 ppm on 10th day, and was below the detection limit on the 30th day. Growth of Trichoderma harzianum was not affected by bifenthrin even up to 40 ppm concentration. However, chlorpyriphos affected the growth of Trichoderma at higher than 5 ppm dose. Similarly, imidacloprid inhibited the colony growth from 2 ppm onwards. Having high lipophylic property and contact toxicity, bifenthrin would be an ideal alternative insecticide to chlorpyriphos for the management of white grubs in palm garden, which is safe and long persisting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of insecticides. Journal of Economic Entomology, 18, 265–267.

    Article  CAS  Google Scholar 

  • Abraham, V. A., (1983). Biology, bionomics and control of coconut cock chafer, Leucopholis coneophora Burm. Ph.D. Thesis Kerala Agricultural University Vellanikkara.

  • Abraham, V. A., & Mohandas, N. (1988). Chemical control of the white grub Leucopholis coneophora Burm., a pest of coconut palm. Tropical Agriculture, 65(4), 335–337.

    Google Scholar 

  • Anonymous (2000). Annual report ICAR- central plantation crops research institute, Kasaragod, P. 127.

  • Anonymous (2011). Annual report of AINP on White grubs and other soil Arthropods, ICAR.p. 93.

  • Bhaskara, S., Kookana, R. S., & Naidu, R. (1999). Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pesticide Science, 55, 1222–1228.

    Google Scholar 

  • Channabasavanna, G. P. (1954). Scoliid parasites on chafer grubs (pp. 1953–1954). Mysore: Annual Report of Dept. Agric.

    Google Scholar 

  • Cowles, R. S. (2003). Modeling the effectiveness of bifenthrin for reducing populaitons of Japanese and oriental beetle larvae in nursery containers. Journal of Environmental Horticulture, 21(2), 78–81.

    Google Scholar 

  • Elad, Y., Chet, I., & Katan, I. (1990). Trichodermaharzianuma biocontrol agent effective against Sclerotium rolfsii and Rhizoctoni asolani. Phytopathology, 70, 119–121.

    Article  Google Scholar 

  • Elliot, M., Janes, N. F., & Potter, C. (1978). The future of pyrethroids in insect control. Annual Review of Entomology, 23, 443–469.

    Article  CAS  Google Scholar 

  • Finney, D. J. (1971). Probit analysis. 2 nd edition (p. 318). Cambridge University Press.

  • FMC Corporation. (1983). Application for experimental use permit, product chemistry, DPR report no. 50429–024. Sacramento, California: Department of Pesticide Regulation.

    Google Scholar 

  • Hegde, A. S., & Deal, J. (2014). Areca nut farming in southern India: A case study. International Journal of Business and Social Science, 5(10), 40–45.

    Google Scholar 

  • Henderson, C. F., & Tilton, E. W. (1955). Tests with acaricides against the brown wheat mite. Journal of Economic Entomology, 48, 157–161.

    Article  CAS  Google Scholar 

  • Kabana, R. R., & Curl, E. (1980). Nontarget effects of pesticides on soilborne pathogens and disease. Annual Review of Phytopathology, 18(1), 311–332.

    Article  Google Scholar 

  • Kumar, A. R. V. (1997). Biology and management of arecanut white grubs, Leucopholis spp. (Coleoptera: Scarabaeidae) in Karnataka. Ph.D. Thesis: Univ. Agric. Sci. Bangalore, 230p.

  • Lu, C., Warchol, K. M., & Callahan, R. C. (2014). Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder Bull. Insectology, 67(1), 125–130.

    CAS  Google Scholar 

  • McCoy, C. W., Quitela, E. D., Simpson, S. E., & Fojtik, J. (1995). Effect of surface application and soil incorporated insecticides for the control of neonate larvae of Diaprepes abbreviates in container grown citrus. Proc. Fla.State. Hort. Soc., 108, 132–136.

    Google Scholar 

  • McCoy, C. W., Stuart, R. J., Jackson, I., Fojtik, J., & Joyte, A. (2001). Soil surface application of chemicals for the control of neonate Diaprepes abbreviates (Coleoptera :Curculionidae) and their effect on ant predator. Florida Entomologist, 84, 327–335.

    Article  CAS  Google Scholar 

  • Mohan, C., & Vidyasagar, P. S. P. V. (1993). Bioecology of coconut white grub L. coneophorain Kerala. Journal of Plantation Crops, 21, 167–172.

    Google Scholar 

  • Mukerjee, I., Singh, R., & Govi, J. N. (2010). Risk assessment of a synthetic pyrethroidbifenthrin on pulses. Bulletin of Environmental Contamination and Toxicology, 84(3), 294–300.

    Article  Google Scholar 

  • Mullins, J. W. (1993). Imadacloprid: A new nitroguanidine insecticide. In S. O. Duke, J. J. Menn, & J. R. Plimmer (Eds.), Pest control with enhanced environmental safety (pp. 183–189). ACS, Washington DC: American Chemical Society Symposium.

    Chapter  Google Scholar 

  • Nielsen, D. G., & Cowles, R. S. (1998). Preventing white grub infestation in container- grown nursery stock. Journal of Environmental Horticulture, 16, 202–207.

    Google Scholar 

  • Oliver, J. B., Reding, M. E., Klein, M. G., Youssef, N. N., Mannion, C. M., Bishop, B., James, S. S., & Callcott, A. M. (2007). Chlorpyrifos immersion to eliminate third instars of Japanese beetle (Coleoptera: Scarabaeidae) in balled and burlapped trees and subsequent treatment effects on red maple. Journal of Economic Entomology, 100(2), 307–314.

    Article  PubMed  Google Scholar 

  • Padmanabhan, B., & Daniel, M. (2003). Biology and bionomics of palm white grub Leucopholis burmeisteri. Indian J. Entomol., 65(4), 444–452.

    Google Scholar 

  • Pettis, J. S., Engelsdrop, D. V., Johnson, J., & Dively, G. (2012). Pesticide exposure in honey bee resulted in increased level of gut pathogen. Nosea. Die Naturwissenschaften., 99(2), 153–158.

    Article  CAS  Google Scholar 

  • Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., & Vanengelsdorp, D. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosemaceranae. doi:10.1371/journal.pone.0070182.

    Google Scholar 

  • Potter, D. A. (1998). Destructive turf grass insects: Biology, diagnosis and control. Ann. Arbor Press., 428.

  • Raghavan, V., & Baruah, H. K. (1958). Arecanut: India's popular masticatory — History, chemistry and utilization. Econom. Bot., 12, 315–325.

    Article  Google Scholar 

  • Rodriguez, A. M., & Peck, D. C. (2009). Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallonmajaleand Popillia japonica. Biological Control, 51, 169–180.

    Article  Google Scholar 

  • Rogers, M. E. and Potter, D. A. (2003). Effect of spring imidacloprid application for white grub control on parasitism of Japanese beetle (Coleoptera :Scarabaeidae) by Typhiavernalis (Hymenoptera: Typhidae).

  • Schumacher, V., & Poehling, H. M. (2012). In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhiziumanisopliae. Fungal Biology, 116(1), 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, E., & Schroder, D. (1990). Side-effects of sequentially-applied pesticides on non-target soil microorganisms: field experiments. Soil Biology and Biochemistry, 22(3), 367–373.

    Article  CAS  Google Scholar 

  • Shapiro, D. I., Cate, J. R., Pena, J., Hunsberger, A., & McCoy, C. W. (1999). Effects of temperature and host age on suppression of Diaprepes abbreviates(Coleoptera: Curculionidae) by entomopathogenic nematodes. Journal of Economic Entomology, 92, 1086–1092.

    Article  Google Scholar 

  • Shapiro, D. I., & McCoy, C. W. (2000). Susceptibility of Diaprepes abbreviates (Coleoptera: Curculionidae) lavae to different rates of entomo pathogenic nematode in the green house. Florida Entomologist, 83, 1–9.

    Article  Google Scholar 

  • Stamm, M. D., Baxendale, F. P., Heng-Moss, T. M., Siegfried, B. D., Blankenship, E. E., & Gaussoin, R. E. (2011). Dose-Response Relationships of Clothianidin, Imidacloprid, and Thiamethoxam to Blissus occiduus (Hemiptera: Blissidae). Journal of Economic Entomology, 104(1), 205–210.

  • Stephen Jebakumar, R., Anandaraj, M., & Sarma, Y. R. (2000). Compatibility of phorate and chlorpyriphos with Trichodermaharzianum(Rifai.) applied for integrated disease management in black pepper (Piper nigrumL.) Journal of Spices and Aromatic Crops, 9(2), 111–115.

    Google Scholar 

  • Subaharan, K., Vidyasagar, P. S. P. V., & Mohammed, B. B. M. (2001). Bioefficacy of insecticides against white grub. Leucopholislepidophora Blanch. infesting arecanut palm. Indian J. Plant Protec., 29(1 &2), 25–29.

    Google Scholar 

  • Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annual Review of Pharmacology, 45, 247–268.

    Article  CAS  Google Scholar 

  • Veeresh, G. K., Vijayaendra, M., Reddy, V. N., Rajanna, C., & Rai, P. S. (1982). Bio ecology and management of areca white grubs (Leucopholisspp.) (Melolonthinae:Scarabaeidae). J. soil Biol. Ecol., 2, 78–86.

    Google Scholar 

  • Villani, M. G., Wright, R. J., & Baker, P. B. (1988). Differential susceptibility of Japanese beetle, oriental beetle, and European chafer (Coleoptera: Scarabaeidae) larvae to five soil insecticides. Journal of Economic Entomology, 81(3), 785–788.

    Article  CAS  Google Scholar 

  • Vincent, J. M. (1927). Distortion of fugal hyphae in presence of certain inhibitor. Nature, 150–850.

  • Xuan, L., Dafeng, H., & Emmanuel, K. D. (2011). Characterizing Rhizo-degradation of the insecticide Bifenthrin in two soil types. Journal of Environmental Protection, 2, 940.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Prathibha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathibha, P.S., Subaharan, K. & Kumar, A.R.V. Toxicity and dissipation of soil insecticides applied in the management of arecanut white grub, Leucopholis burmeisteri Brenk. (Coleoptera: Scarabaeidae). Phytoparasitica 45, 155–163 (2017). https://doi.org/10.1007/s12600-017-0579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-017-0579-9

Keywords

Navigation